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Falkner-Skan equation is a classic laminar bound-
ary layer equation. It was first deduced by U. M. Falk-
ner and S. W. Skan in 1931"". The numerical solutions
of Falkner-Skan equation was studied by D. R. Har-

2l Later, an numerical method for solving Falk-

tree
ner-Skan equation was also presented by Guojun Li"*" |
Liancun Zheng Anguo Wen and Xinxin Zhang provided
the approximate analytical solutions by using Adomian
decomposition method. Many works had been investi-
gated about the Falkner-Skan equation, for details, see
the reference [ 5—7 ]. All of the above-mentioned
works have had attention paid to the analytical solutions
or numerical ones. The qualitative properties of the so-
lutions are studied in this paper and a theoretical esti-

mate formula for skin friction coefficient denoted by the

pressure gradient parameter is presented.
1 Falkner-Skan equation

LG +f()f' () +B(1 =f7 (7)) =0,0sm < +o0 (1)
J(0) =0,1(0) =0,f(+) =1 (2)
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Introducing a transformation as refs. [ 8,9 ]
g(t) =f1(n) (dimensionless shear stress) (3)
¢ =f" (n) (dimensionless tangential velocity ) (4)
and substitute equaes (3),(4) into equaes (1),(2),
in terms of /() >0,0<y <+, f'( +) =0, we
arrive at the following singular nonlinear two-point

boundary value problems .

" — 1_t2 ’_L
{gm‘ Blan) 2o
g(l) =0,

O<t<l

g(0)g’(0) = -8
(5)
It may be seen from the derivation process that only the

positive solutions of eq. (5) are physically significant.
2 The solutions of eq. (5)
it is con-

Since the problem is singular at ¢t =1,

venient by considering the boundary conditions

without singularities
" 1 _tz ’ l
1) = - -—
{g( ) ’B(g(t)) g(1)’
g(1) =h

O<i<l

£(0)g'(0) = -B
(6)
Denote the solution of eq. (6) by g, (t), we first
show the following lemmas.
Lemmal Ifh >h, >0, and =0, then

g, (1) =g, (1).
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Proof
exists a point £, e [0,1) such that g, (,) <g,, (1,).

If the inequality is not true, then there

We consider only two cases.
2.1 g, (0) <g,(0)

Choose ¢, =0, since g, (1) >g;,, (1) >0, then
there exists a maximal interval [0,k] (k <1)such that
g, (1) <g, () forte[0,k), and g, (k) =g,, (k) =
m>0. g, (t) and g, (t)are both the positive solu-

tions of the integral equation

g(1) =m+ [Grs) Lo (7)

g(s )

Where the Green’ s function G(t,s) is defined as
s(1=1),
6(1,5) ={ (=0

(1-s)(B+Bs+s), 0<si<s<k
Eq. (7) implies:

0 <g,(1) ~g,() = [ G0

O0ss<it<k

1 ]ds <0

ghz(S) 8, (s)

which is a contradiction.
2.2 g, (0)=g,(0)
Since g, (1) > g, (1) >0, then there exists a

maximal interval[ a,b](0<<a <b <1), which contains
the point tysuch that g, (a) =g, (a)and g, (b) =
g,(b),
g, (1)
ipe (a,b) and g’ (t,) =0. Denote g(t,) =m, for

1-7 t
(1) = - ' — ——, intergation from ¢, to s
0= ~By(y) M °

and g, (1) <g,,(t)forte (a,b). Letg(t) =

- g, () then g(¢) has a positive maximum at

1 -5 * - 1

‘Bgu>‘Law“+B

again integration from ¢, to b leads to
(I [ (b - t)
b) - m - —dt +
e) = m = - pf isa - [
,3<1 _to)(b _to>

, and

yields g'(s) =

b

m
S e T N (¢ )
g, (0) = m o= = pf s - [P
ﬁ(l —to)m(b—to) (a)
R B AR N (O 2 ))
ghz(b) m = ﬁl() g,lz(S)ds f,o ghz(t) RO

B(l—tﬁ)(b-to)

m

(b)
equaes (a),(b) leads to
Wﬂﬂw—%w>#ﬁu—ﬁ(l S as

hz(s) ghl(s)
Jt(b B )(ghz(L> 8, (t)

)dt <0.
Which is also a contradiction.

Lemma 2 For any fixed h >0 and 8=0, e
(6) has at most one positive solution.

Proof Suppose eq. (6) has two positive solu-
tions g, (¢) and g,(¢) for each fixed h >0 and 8=0.
Then, without loss of generality, we may assume that
there exists a point ¢, € [0,1] such that g, (¢,) >
g,(t,). Since g, (1) =g,(1) =h then there exists a
maximal close interval [ a,,b, ] € [0,1] such that
g1 (1) >g,(t) for
tela,,b,].

(i) If a, =0, then g,(t) =g,(t) for
te[0,b,]C[0,1] and g,(b,) =g,(b,).

(i) If @, #0, then g,(a,) =g,(a,)Fl g,(b,) =
g,(b,) fortela,,b,]C[0,1], and g,(t) >g,(t).
forte (a,,b,).

It follows along the same lines as the cases (i)
and (ii) in lemma 1, we may show that this is impos-
sible.

Lemma 3 For any fixed h >0 and B=0, e
(6) have at least one positive solution g, ().

Proof For any fixed h >0 and 8=0, if g(¢) is
the positive solution of eq. (6), then g(¢) must be a

positive solution of the integral equation

g(1) —h+

oW

Where the Green’s function G(t,s)is defined as

s(1-1),
(1-5)(B+Bs+s), 0<t<s<].

0=ss<i<l

61 =
We defining a mapping T';

Tg(t) =h +Ll

1
g(s)ds
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Where Q= 1{g(t) eC[0,1]:h<g(t)<(Th) (1)},
and C[ 0,1 ]is the set of all real-valued continuous
functions defined on[0,1]. Then T is a completely
continuous mapping from () to ). The Schauder Fixed

Point Theorem'*’

asserts that the mapping Thas at least
one fixed pointg, (¢)in €, which implies that g, (1) is
a positive solution of eq. (6).

Denote ¢ (0) = o and consider the initial

value problem

_tz

" _ 1 b
&0 = =B ) g0 <<

(9)

2(0) =0, g'(0)= -8
g

Let g(¢t) be the positive solution of eq. (5) and [0,
¢, ) be the maximal interval of existence with g(0;8) =
o, then we may established the following results:
Lemma 4 (i) Let g, and g, be solutions for
o=0,and o =0,, if o, <o,, thent, <t .
(ii) ¢,

+ o as g— + ®©.

is a continuous function of ¢ and 7, —

The proof of this lemma is similar to that of lem-
mas 1, 2 and 3 in ref. [ 12], we omitted here.

Lemma 5 For any fixed h >0 and =0, the

positive solutions g, (#) of eq. (6) satisfies

1+4
(0.8 > [
Proof In terms of eq. (9), forte (0,1)
3
g(t) <0’+‘@ Br_1t.
o 60

3
Let f(t) =0 + B _B_ L, then the positive solu-
30 o 60
tion of initial value equae (9) satisfies g(t) <f(¢) for
te(0,1).

the t-axis at the point ¢, .

%ﬁ for 8=0.

In term of lemma 4 assume f(t) intersects

Especially for ¢, =1, this
yields o =

It is similar to lemma 1, we may show the positive
solution of eq. (9) is increasing with o, so the positive

solutions g(¢;0)of eq. (9) can’t intersect the point 1

for o< 1%4@ It implies that for o< 1;64@, the

positive solutions of initial value problem equae (9)
satisfies g(1) <0. This shows that for any fixed & >0
and 8=0, the positive solutions g, (¢)of eq. (6) satisfies
T+48

6
Theorem Assume that =0, then eq. (5) has

gh(o’ﬂ) >

a unique positive solution.

Proof lemma 2 and lemma 3 show that for any
h >0and B=0 eq. (6) has a unique positive solution.
Then for any h, > h; >0, in terms of eq. (8) and
lemma 1,

0 < ghz(t)

fG(t S>[g/72( )

It indicates the

—gh(t) =h, —h, +

1
ds < h, — h,.
&xw]‘ 2o

series of positive solutions
{ g, (t) | converges to a limit uniformly with A on [0,

1], denotes by g,(t). Then }Lrg g, (1) =g, (1) ,te
[0,1].

Lemma 5 implies g, (0,8) > 1;64@('820)

For any h=0, by the convexity of g, (), this yields
gh(t) =h + (gh((),ﬁ) -h)(1-1)=

h+g,(0,8)(1-t)—h=

a0 (1-0= -y (o)

In terms of eq. (8) and using the above, we can
see that
I
B (l—s)(B+Bs+s) s(1 -1)
a0 =kt [0 ol

he 543(%5

—Bt—gtz) (11)

So g,(0,8) <h + /6(1+38) , by using the Monotone

2 /T+48
Convergence Theorem'” ' | Letting h—0* in the in-
tegral equation (8), we get

I
1
t) = | G(t,s) ———ds.
g() ( ) J(; ( ) go ( S)



23 44 TR, 45—y S L (E BRI BE BE AR 0 Al 1122 5K 54917

The above arguments indicate that eq. (5) has a
unique positive solution g,(¢). Furthermore, in terms
of lemma 5, we have

L+4_ _ < f6(1+3p)
6 =0 gO(O,B)\Z m

This proves that eq. (5) have a unique positive
solution g( ), satisfying

L+4p_ _/6(1+3p)
s \o—go(O,B)\z ST+48 (12)

In order to illustrate the reliability and efficiency
of the proposed theoretical results and the estimate for-
mula. Denote the skin friction coefficient g(0,8) ob-
tained numerically by o, =g(0,8), and the esti-

mated results obtained by estimation formula (12) by

1+48 /6(1+3B)
O Jower-bound = 6 and a’upper-buund = ’
2 /1+4B
respectively.

A comparison is presented in table 1. The relia-
bility and efficiency of the theoretical prediction are

verified by numerical results.

Table 1 Comparison numerical results

B O lower-bound O eom =8(0,B) O upper-bound
B=0 0.408 2 0.457 7 1.2247
B=0.05 0.447 2 0.5311 1.2857
B=0.1 0.483 0 0.5870 1.345 6
B=0.2 0.547 17 0.686 7 1.460 6
B=0.3 0.605 5 0.774 8 1.568 9
B=0.4 0.658 3 0.854 4 1.671 0

Table 1 shows all numerical results lie in the
range that are estimated by formula (12). When pres-
sure gradient parameter is bigger, the error that is esti-
mated by lower-bound of formula (12) is bigger. But,
with the decreasing of gradient parameter, the formula
(12) goes more and more reliable and efficient. Espe-
cially, for appropriately small pressure gradient param-
eter, we can consider the results that are estimated by
lower-bound of formula (12) as approximate value of

skin friction coefficient. Clearly, all results are com-

pletely consistent with the results obtained by theoreti-

cal analysis.

4 Conclusions

This paper presents a theoretical analysis for the
boundary layer flow. The boundary layer equations are
reduced into a singular nonlinear two-point boundary
value of ordinary differential equation when Crocco var-
iables were introduced. Sufficient conditions for exist-
ence and uniqueness of positive solutions are estab-
lished. Furthermore, a theoretical estimate formula for
the skin friction coefficient is given. The reliability and
efficiency of the theoretical prediction are verified by

numerical results.
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[ Abstract] A class of singular nonlinear boundary value problems arising in boundary layer theory are studied.
Sufficient conditions for the existence and uniqueness of the positive solutions to the problem are established by uti-
lizing the monotonic approaching technique. And at theoretical estimate formula for skin friction coefficient is pres-
ented. The formula can be successfully applied to estimate the value of the skin friction coecient. The correctness of
the analytical predictions is verified by the numerical results.
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Matroid Unions and Transversal Matroids

LU Guo-liang, YU Bao-min

( Department of Mathematics and Information Science, Weinan Teachers University, Weinan 714000, P. R. China)

[ Abstract] The matroid unions and transversal matroids are investigated. Firstly, rank function of the matroid
unions defined on varied set is deduced. Then, combining matroid determined by polymatroid function with rank
function of transversal matiroid, several relations and properties of matroid unions and transversal matroids are giv-
en.

[ Key words] matroid unions transversal matroid polymatroid function rank maximum common

independent set problem



