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Attention has been paid to the existence and multi-
plicity of periodic solutions for second-order nonlinear

differential equations '

. In this paper, we will in-
vestigate the difference equations corresponding to the
following differential equation ;
2"(t —7) + of(t,2(t) ,x(t —7) ,2(t =27)) =

x(t —7) (1)
where ¢ is a constant. In ref. [3],the authors investi-
gated the qualitative properties of an analogue of equa.
(1). The sufficient conditions responsible for the exist-
ence of multiple periodic solutions of equa. (1) were
obtained by a variational method (see ref. [3]).
However, the contributions of ref. [ 3] are referred to
the continuous differential-equation models. In applied
sciences ,the models are generally described as discrete
ones. Especially,in earth sciences the difference equa-

tions is a dominant form that describes atmospheric and
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oceanic motions. It is therefore obvious that the explo-
ration of the qualitative properties for nonlinear differ-
ence equations is urgently needed refs. [4—7]. Upon
this requirement,we will use the Z,-group index theory
to explore the periodic solutions of the discrete version
of equa. (1). Since the difference equations are dis-
crete and then finitely dimensional,the traditional ways
of establishing the functional in ref. [3] may be inap-
plicable. Then an appropriate variational structure will
be developed to address the periodic solutions of the
discrete equation.

Denote by N,Z R the set of the natural numbers,
integers, and real numbers, respectively, the discrete
version of equa. (1) can be written as follows by the

frog-leap finite difference scheme

02_x _xn+1 _zxn +xn—1 _Az(xn)
(atz)n_ (A (A)*
Az(xn) +720-f(n + 1 ’xn+1 ’xn ’xn—l) =szn (2)
where the time step At is assumed to be 7. Without loss

of the generality, we discuss the periodic solutions of
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the following difference equations
N (x,) =2, +0f(n% %) =0 (3)

Where

(A,) f:Z x R*—>R is a continuous functional in
the second , the third and the fourth variables and satis-
fies f (¢t +m,u,v,w) =f(t,u,v,w) for a given posi-
tive integer m;

(A, ) there exist a continuously differentiable
function F:Z x R2—>R,such that

F!(t,uw) +F/(t-1,0,w) =f(t,u,u,w);

(A;) F satisfies; F(t,-u, -v) = F(t,u,v),
and f (t, —u, -v, —w) = —f (t,u,v,w).

1 Variational structure of equa. (3)

To discuss the existence of periodic solutions for
equa. (3) ,we construct a variational problem and then
reduce the periodic solutions for equa. (3) into the
critical points of the corresponding functional.

Let X={x={x}:

n

%, eR,neZ}be a set of se-
quences. For any x,y € X, a,b € R, ax + by is
defined as

ax +by ={ax, +by,} eX (4)
Then X is vector space. To facilitate the discussion, we
define a sub-space of X as follows.

E, ={x={x,}eXlx

pm n n+pm

=x,,neZ} (5)
where p and m are two given positive integers. It is ob-
vious that £, is isomorphic to R™. If we define a inner

product on £, by

pm
<x,y>E,, = inyi,\fx ek, (6)
=1

then the norm || - || can be induced by

pm 1
2] =C Y, %/)?,Vx € E,, (7)
i
Thus, E,,, with the inner product in equa. (6) is a finite
dimensional Hilbert space and linearly homeomorphic
to R™.

A functional on E,, can be constructed as follows.

pm
1
J(x) = 21 [7(| Ty =%, 17 4+ 2, 1= 0F(ny,,, ,xn)]

(8)
where F is the one in the assumption (A,) as men-
tioned above.

It is easily shown that J e C' (E, ,R). For any

pm 3

x=1{x,| e E,,,the first-order variational of J can be

derived as follows.

= N () —x rof (s )

n=1,2,3--,pm (9)
Therefore ,equa. (8) is the variational problem of equa.
(3). We will use Z,-group index theory to explore the
critical points of equa. (8). In next section,some defi-

nitions and basic lemmas are stated.
2 Definitions and lemmas

Let S be a real Hilbert space,and I be a continu-
ously Fréchet differentiable functional,i.e. I e C' (S,
R).

Definition 2.1 A “critical point” of the functional /
is a point x € S for which I'(x) =0. A “critical value”
of I is a number ¢ such that I (x) = c for some critical
point x. The set K= {x e SII'(x) =0} is the “critical
set” of 1. We denote by K, the set {x € SII'(x) =0,
I(x) =c}.The “critical level” set I, of I is defined by
I, ={xeSlI(x)<c}.

Definition 2.2 ] is said to satisfy P-S condition, when
a sequence {s,| C S is of the property: {I(s,)} is
bounded and /'(s,) —0(n—o ) ,then {s,} possesses
a convergent subsequence in S.

A closed symmetric set A C S is said to satisfy
property { if there exists an odd continuous function
¢: A—R"\ {6} for some neZ". Let N,CZ be defined
as follows: n e N, if and only if A satisfies proprty
with this n.

Definition 2.3 Let Y = {AlACS\{64},and 4 is
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closed , symmetric set} . Define y: X —Z" U { + | as

follows ;
min N, if N,#0,
v(A) ={o0, ifA=0, (10)
+o, if A#0,but N, =0

Then v is the genus of Y. We let i, (I) = al—iﬂlo‘y(l“)
and i, (1) =8E{rlmy(1a).

Assume that B is an open ball in S with radius §
and center 0, we introduce the Lemma 3. 1 related to
Z,-group index theory.

Let I e C' (S,R) be an even func-
tional that satisfies the P-S condition and 7(9) =0.

Lemma 2.1

(B,) If there exists an m-dimensional subspace S,
of S and § >0,such that
sup I(x) <0,

xeS1NBs
then i, (1) =m;
(B,) If there exists a j-dimensional subspace S of
S such that
inf I(x) > — o0,
then i, (1) <j.
If m=j, and the conditions (B,) and (B,) hold,

I has at least 2(m —j) different critical points.
3 Main results

Theorem 3.1

satisfy the following conditions

(C)) F(£,0,0) =0,andw#o,

If the difference equations equa. (3)

V(t,u’v’w) ER4’
(C,) there exists a constant 8 >0 such that F(t,

u,v) <0 whenever u* +4* >B,teR.

() limW:l,lpl e

1p1—0 |p

9 . e
and for o >~ and a given positive integer p,the equa.

4

(3) has 2pm nontrivial pm-periodic solutions.

Lemma 3.1 Assume that the functions f(¢;u,v,w)

and F(t,u,v) satisfy the conditions (C,)and (C,)of
Theorem 3. 1, the functional J in section 1 is bounded
forallx e E

pm 3

Proof For x ¢ £

pm

and then satisfies the P-S condition.

we have

pm
J0) = X [ 5 = 4 1 =0, )] =
n=1

S 1
2 [xi = XnXon 41 +?xi _O-F(nrxnﬂ 7xn)] =

n

I
!

NgE

[%xi -x,%,, —oF(ngx,, ’xn)] =

I
-

n

pm
xTAx _UZ F(n’an 7xn),
n=1

T
where x = (%, ,%,,"*,%,,) ",

32 -172 0 0 -12
-12 3722 -172 - 0 0
A=l 0 -12 372 .- 0 0
-172 0 0 ot -172 32 pm X pm .
The matrix has pm eigenvalues. Let A;,A,,A;,**,A,,

be the eigenvalues of A. By matrix theory, it is shown
that A;>0,/=1,2,3,-- ,pm.

Set /\min = ,_lnzll.l.l. /\j ’/\max = _lnzlaX )\‘J'
J=1,2,,pm J=1,2,",pm

Let X = { (u,») lu® +v* >B}. Then X is open and X C
R>. Tt is easily known X" is closed in R*. From the con-
dition (C,) of Theorem 3. 1, we obtain that F(z,u,v)
has an upper bound for (u,v) € X and ¢ € R. On the
other hand, F is a continuously differentiable function
on R?,and then F is bounded on the closed set X* for a
finite time ¢. It is therefore derived that F' is bounded
from above on R for a finite time ¢. That is, there exists

a constant C such that C = maxF(n,x,,,,x,). Further-

reky,

more,

=C>0

max F(t,u,v) = max
(t,u,w) eRxXT

and o >0. We obtain the following inequality.

pm
J(x) =xTAx_0- ZF(nran ’xn) =
n=1

pm
/\min ” x ” 2 - 0’2 F(n’xn+1 ’xn) =
n=1

/\min ” x ” 2 - O-Cpm *
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It is derived that there exist a constant M, such that for
every xeE ,J(x) =M, That is to say, J has a lower

bound.

Furthermore , we choose a sequence x*

pm

e E,, that
satisfies; for all k e N, J(x® ) has an upper bound.
Then we obtain that there exists a constant M, , the fol-
lowing inequality holds.
Ao 12 |7 = 0Cpm < J(x™P) < M,.

that is,

Ao 15 |12
Then, for any k e N, || +® | <

< M, + ocCpm,

M, , where M, =

\/ /\L(M1 +oCpm) =0. Since E,, is finite dimension-

al,we obtain that there exists a subsequence of {x® | |

which is convergent in E,,. J satisfies P-S condition.
Proof of Theorem 3.1 From the above, it has
been shown for any x € E .
J(x) = Ay, || % || * = oCpm.
Then

1nf](x)>—co ,and i, (J) =0.

xvekyy

On the other hand, by the condition (C,) ,we have

m FL150) Ve

|p|—>0 |p

=1,lpl =

Choose 0 <€ <0'—%,

oF(t,uw)=(o-€) (v’ +0°),

there exists § >0, such that

where (u,v) € B, = {(u,v) lu* +v* <8}. Thus, when

we choose p =§,we can get

OEDAEEN

2 1 2
57+l 17 = 0y, ,8,) |

< 1
Y [2max x |2,|xn|2}+7|xn|2]-

n+l

pm
2(0_6)(| Fn+1 |2 +| xnlz) S

(201 x,, 1%+ 2, 1%)] +%|xn|2 220 -€) X

n=1
pm pm 1
2 2 2
5,17 < Y (415,17 41, 1%)-
n=1 n=1

S

5l 20 -9 1#]” =

o-¢ x| =
(3 -0 +e)ls1* Vre K, 0B, =B,

Thus, we have

sup J(x) <0,that is,i,(J) =pm.

xeEypNBs

By condition (C, ), we obtain that J(4) = 0.
Thus, the proof of theorem 3.1 is complete.

Finally,we present an example to illustrate theo-
rem 3. 1.

Example 3.1 Let

f(t,u,v,w) =4v—411[(1 +sin’ %t)(uz +0°) +

. am(t-1) 2 2
(1+sm - )(11 +w )]
Take
F(t,u,v) =u2+112—(1+sin2 %t)(u2+112)2,
we have

F”l(t’u’v) +Ful(t —1,2),11)) =4v —4v X [ (1 +Sln2 %t)

(u2+112)+(1+sin (e 1))( +w )]

This is just the functional f(¢,u,v,w). Also,it is easily
derived that F (¢, —u, -v) =F(t,u,v),f(t, —u, -v,

—’l,l}) = —f(t,u,v,w) 9and

mF(t,uz,'v)=
Ip1—0 |p|
.2t
u2+112—(1+sm2—)(u2+112)2
. m
lim TR =1.
Ip|—0 u +v

In addition, it is noticed that when u® + o* >

1

m, F(t,u,v) <0, where the upper

1

bound of —————
oune o 1 +sin®*(mwt/m)

for teR is 1. Then we have

whenever u” +v* >1,F(t,u,v) <0 for any ¢ € R. To
this end , we have tested all the conditions of theorem 3.

1 for example 3. 1.
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Existence of Multiple Periodic Solutions for a Class of
Second-order Nonlinear Difference Equations

YANG Li-li

( Beijing Jiaotong Vocation Technical College, Beijing 102200, P. R. China)

[ Abstract] The Z,-group index theory is used to explored the periodic solutions for a class of second-order non-
linear difference equations. The sufficient conditions responsible for the existence of multiple periodic solutions of
this kind of discrete system are obtained. The proofs are presented in detail. Furthermore ,an example is given to il-
lustrate the conclusions.

[ Key words] periodic solution nonlinear difference equations Z,-group index theory



