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Solid oxide fuel cell (SOFC)is an energy conver-
sion device that produces electricity by electrochemi-
cally combining fuel (e. g., hydrogen) with oxidant
(e. g. , oxygen) gases across an ionic conducting ox-
ide'"’. The SOFC operates at relatively high tempera-
tures (800 °C ~1 000 °C ) under atmospheric or elevat-
ed pressures, depending on the fuel cell design and in-
tended use. Under typical operating conditions, single
cells (each cell producing less than 1V) are stacked to
produce the required power and voltage levels. Be-
cause of all solid-state construction, the SOFC can be
made into compact and lightweight units for increased
power densities. The key feature of this fuel cell tech-
nology is its clean and efficient generation of electricity
from a variety of fuels'”’.

An important tool in the fuel cell development is
mathematical modeling, which has the capability of
predicting the fuel cell performance. It is well known
that SOFC is sealed, and work at high-temperature and

in a complicated environment. SOFC is a nonlinear
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system with multi-input and multi-output, and it is ver-
y difficult to model using the traditional methodologies.
In last several decades, many SOFC stack models have

7! However, most of the existing

been reported'
models developed are based on mass, energy and mo-
mentum conservation laws, and their expressions are
too complicated to meet the demand of control system
design for the SOFC.

Neural network is considered as an attractive
structure to establish the mathematical relationship of
the dynamic system based on the input-output data. It
has been shown that feed-forward neural networks with
one hidden layer can uniformly approximate any contin-
uous function to a specified accuracy. In this paper, a
kind of radial basis function neural network ( RBFNN)
based on orthogonal least squares ( OLS) method is
firstly proposed. Then, the authors try to avoid the in-
ternal complexity of the SOFC, a current-voltage iden-
tification model under different fuel utilizations is pres-
ented. The validity of the model is proved by simula-

tion experiments.
1 Description and analysis of SOFC stack

A SOFC consists of an interconnect structure and
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a three-layer region composed of two ceramic elec-
trodes, anode and cathode, separated by a dense ce-
ramic electrolyte (often referred to as the PEN—Posi-
tive-Electrode/ Electrolyte/Negative-Electrode ) . SOFC
can use hydrogen, carbon monoxide and hydrocarbons
as fuel, air (or oxygen) as oxidant. A typical H,—
H,0, Ni | YSZI| Pt, O, fuel cell is shown in fig. 1.
The principle of SOFC is based on the conversion of
the chemical energy, which is stored in the fuel ( hy-
drogen or methane ) , into electrical energy through an
electron-producing electrochemical reaction. The detail
process is as follows: 1) oxygen diffuses through the
porous cathode material; 2 ) oxygen molecules are dis-
sociated and ionized at the cathode/electrolyte inter-
face; 3)oxygen ions migrate through the electrolyte to-
wards the anode/electrolyte interface; 4 ) fuel diffuses
through the porous anode material; and 5) hydrogen
contained in (and/or produced by) the fuel reacts with
oxygen ions, producing water and liberating electrons,
that flow back to the cathode/electrolyte interface, via
an external circuit'®’.

To produce a useful voltage, a complete SOFC
system can not be made up of a single solid oxide fuel
cell, as its voltage is quite small (about 0.7 V when
drawing a useful current), but most consist of several
repeating electrochemical cells in a module, connected
both in series and/or in parallel and assembled to com-
pose a stack.

1.1 Physical model of the SOFC

The fundamental electrode reaction in the SOFC is
different from that of other kinds of FC'”'. When using
hydrogen as fuel, the electrochemical reactions of the
SOFC at the anode and cathode, respectively, are

Anode:H, + 0°"——H,0 +2e~ (1)

Cathode;%O2 +2e —0*" (2)

To calculate the open-circuit emf of a stack of N,

cells in series, refer to the well-known Nernst equation
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Fig. 1 Principle of SOFC
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Under steady state, the reaction output partial pres-

8]

sures are
pu, = (Ny, =2K.I0) /Ky, (4)

Pryo = 2K 1pe/ Ky (5)

po, = (Nii/ry o =K o) /K, (6)

One factor not shown explicitly in the above model
is the fuel utilization u. It is one of the important oper-
ating variables that may affect the performance of FC.
Fuel utilization (u)is defined as follows:

COONL NG N (7

For protecting SOFC stack, the desired range of u

is from 0.7 to 0.9. An overused-fuel condition (u >

0.9)could lead to permanent damage to the cells due

to fuel starvation whereas an underused-fuel condition

(1 <0.7)results in unexpectedly high cell voltages .
In this paper we only consider ohmic loss, i.e.

Vi =E =1l (8)

From eq. (3) — Eq. (8), the terminal voltage of the

SOFC is:

K
VdC:NOEOHn[ HZ"( K,

0.5
E. -
f
rHOKOZ) ]

rlFC"’;ln[[FC(i_l)z(z_rH_O)]Ef (9)

u

Hy
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where, E, is the voltage associated with the reaction-
free energy of a cell, N, is the number of series cells in
the stack, £, =NyRT/2F, R is the gas constant, T is
the SOFC operating temperatures, F is the Faraday
constant, p, are the partial pressures of hydrogen, oxy-
gen, and water. ry , is the ratio of hydrogen to oxygen
molar flows. Nﬁ'z , Ny, and N, are hydrogen input,
output and reacted flow rates. K, is a modeling parame-
ter which has a value of N,/4F. K, are the valve molar
constant of hydrogen, oxygen, and water. r is ohmic

loss. Some of the above parameter values are given in

table 1.

Table 1 Parameters of the SOFC stack

Symbol Value
T 1273 K
E, .18 V
Ny 384
K, 0.993 x10 3 mol/(s. A)
Ky, 0. 843 mol/ (s. atm)
Ko 0.281 mol/ (s. atm)
Ky, 2.52 mol/(s. atm)
r 0.126 O
TH o 1. 145

The fuel cell stack’s performance, voltage-current
model under the steady state is shown as eq. (9). But
this model is too complexity to be used in the control
system design. To develop effective control strategies,
it’s necessary to establish an identification model of the

SOFC suitable for control system design.

2 Description of the improved RBFNN

Recently, RBFNN is increasingly employed in a
wide range of applications because of its mighty and
rapid local approximate ability. But there exist two bot-

tleneck problems, i. e. , how to select the appropriate

centers in the hidden layer and the output layer
weights. OLS method is one of the valid methods to
settle the above two problems in RBFNN''""/,

Without loss of generality, we assume RBF output
layer has one neuron. Provided that the training sample
pairs of network are {X,,d(n)}(n=1,2,---,N), N
is the number of training sample pair; X, is the input
data vector; d(n)is the desired output response of the
network. According to the linear regression model, the
desired output response of the network can be ex-

pressed ;

d(n) = gpi<n>wi+e<n> (10)

where, M is the number of neuron in hidden layer,
and also is known as the number of network center,
M< N; w, is model parameter which is the connect
weight between output layer and hidden layer; e(n) is
residual error; p, (n) is regression operator which in
fact is the response of network center under some basis
function @ ( - ). Here @ ( - )is the Gaussian func-
tion.

The eq. (10)can be written as the following ma-
trix equation :

d=PW+e (11)

where

d=[d(1),d(2),,d(N)]",

p=[(pP,pP,,---,P,],

P, =[P,(1),P(2),- ,P.(N)]"(1<i<M),

W=[W, Wy, W,]",

e=[e(1),e(2),,e(N)]".

Using the orthogonal decompose and least square
algorithm, contribution ratio of orthogonal vector u; to

decreasing output error is defined as:
2T
gl u; .

e ], ==, 1sisM 12

[e. ], 7' (12)
The appropriate regression operator subset can be found
simply and availably using Gram-Schmidt orthogonal de-
compose method by eq. (12), and at the same time the

RBF nerve centers and connect weights can be determined.
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M

When 1 -

J
threshold specified ) come into existence, the iterative

[e ] ; <p (p is allowable error
=1

ends up. By now the N x M, orthogonal matrix U com-
posed of M| orthogonal vectors and corresponding trian-
gular matrix A are known. Then the weight matrix W
can be calculated from g = AW. And the set of center
points is no other than the same subscript chosen dur-
ing the orthogonal decompose ( namely the training

sample set with the subscript i, ,i,,*,i, ).

s

3 Identification model of the SOFC stack
with improved RBFNN

The identification structure of the SOFC stack is
shown in fig. 2. TDL is the tapped delay line, and the
predictive error e(n) =d(n) —y(n). In this paper,
the training criterion of RBFNN is to minimize the

mean square errors ( MSE) below
1
EMSI«Z:NZZ (dj<n)_Yj<n)>2 (13)
J n

where, N is the number of data, d(n)and y(n)denote
the desired and model outputs. Actually, the desired

d(n)is the experimental data.

U SOFC e

v

e(n)
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Fig.2 Identification structure of the SOFC stack with RBFNN

Training of the RBFNN can be divided into two-
stage procedures. The first stage is to ascertain the

centers in the hidden layer and the output layer

weights. The second is to train the network using train-
ing data to produce the correct output.

Here, the RBF network is trained using 800
groups of experimental data. The fuel utilization of
SOFC is taken as the input and the voltage and current
density as the output of the neural network model.
Once the RBF network provides a satisfactory output on
the validation data, cross-validation is carried out with
test sample (200 groups of experimental data). After
this final test, the network is ready to generate 1-V

characteristics for a broad range of conditions.

4 Results

The current-voltage characteristics at different fuel
utilizations by the RBFNN model show good consisten-

cy with the experimental data, as shown in fig. 3.
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Fig.3 Voltage-current characteristic;
predicted by RBFNN model and

experimental at different utilizations

From fig. 3, we can observe that the cell voltage
decreases with increasing fuel utilization. This is be-
cause the Nernst potential has a greater decrease at
greater fuel utilizations due to the enhanced depletion of

reactant partial pressures. The simulation results show
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the validity and accuracy of the model. The RBFNN i-

dentification model established in this study makes it
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[ Abstract ]

design demand of SOFC control system, a nonlinear model based on a kind of improved RBF neural network

According to the drawbacks of the existed mathematic models, which are too complicated to meet the

( RBFNN) identification technique is presented. The fuel utilization of the SOFC is taken as the input, the voltage
and current density as the outputs of the neural network model. With 800 groups of experimental data as the train-
ing samples, a cell voltage and current density identification model of the SOFC is established. The simulation re-
sults show the validity and accuracy of the model. Furthermore, based on this RBFNN identification model, some
advanced control schemes can be developed.

solid oxide fuel cell (SOFC) radial basis function neural network ( RBFNN)
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