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In recent years, considerable attention has been
devoted to study of discrete-time system with state de-
lay, they have strong background in engineering appli-
cations, among which network based control has been
well recognized to be a typical example. Consequently
much effort has been made towards investigating the
stability of discrete time-delay system via Lyapunov ap-
proach[lfﬂ. In ref. [3], the robust stability analysis
for discrete-time stochastic neural networks with time-
varying delays was considered. In ref. [ 4], authors
studied the problem of synchronization for stochastic
discrete-time drive-response networks with time-varying
delay. In ref. [5],they have discussed the synchroni-
zation and state estimation for discrete-time complex
networks. In ref. [ 7], Luo have further studied the
mean square exponential stability of the discrete-time
stochastic neural networks with time-varying delays. To
the best of our knowledge, the global asymptotic stabil-
ity for discrete-time system with distributed delays has
never been tackled.

In this paper, we will study the global asymptotic

stability of discrete-time system with distributed de-
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lays. By utilizing a Lyapunov function and using some
well-know inequalities, a unified linear matrix inequal-
ity (LMI) approach is development to establish suffi-
cient conditions for the system to be global, asymptoti-
cally stable and obtain several less conservative condi-
tions. A simulation example is given to show the effec-
tiveness and less conservatism of the proposed criteria.

Notation ; Throughout this letter, R" the n dimen-
sional Euclidean space. The superscripe “T” denotes
matrix trasposition. The notation X = Y ( respective,
X >Y)mean that X and Y are symmetric matrices, and
that X — Y is positive semi-definite (respective, posi-
tive definite). || | is the Euclidean norm in R".
Moreover, the asterisk * in a matrix is used to denote
term that is induced by symmetry matrix, if not explic-
itly specified, are assumed to have compatible dimen-
sions.

Sometimes, the arguments of function will be

omitted in the analysis when no confusion can arise.

1 Model descriptions and preliminaries

Consider the following discrete-time system (1)
with distributed delays
x(k+1) = A(k)x(k) + B(k)x(k - 7(k)) +

CCk) 3 = m) (1)
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Where x(k) € R" is the state vector, 7(k) denote the

time-varying delays satisfying: 7, <7 (k) <7,. The

m

constants u,, =0 satisfy the following convergent condi-

4+ +oo
tions ; z o <L, z mu,, < + . The initial condi-

m=1 m=1

tions of system (1)is assumed to be x(s) =¢@(s),s =
0,-1,--. We denote:A(k) =A +AA(k),B(k) =B
+AB(k),C(k) =C +AC(k). A,B,C are known
constant matrices with appropriate dimensions, AA
(k),AB(k),AC (k) are unknown matrices denoting
the uncertainties in the system. In this paper, the un-
certainties are norm-bouned and are assumed to be of
the following form: [ AA (k) ,AB(k),AC (k)] = DF
(k)[E, ,E, ,E,]. Where D,E, ,E, ,E, are known con-
stant matrices with appropriate dimensions, F (k) are
unknown time-varying functions satisfying F' (k) F (k)
</

To obtain our results, we need introduce the fol-
lowing definition and lemmas.

Definition 1 The system (1)is globally asyptoti-
cally stable in the mean square if klil}lwxz(k,lp) =0.

Lemmal Let M € R"*" be a positive semidefi-
nite matrix,x; € R" and scalar constant a,=0(i=1,2,
--+), if the series concerned is convergent, then the

following inequality holds

( z aixi)TM( z a;x;) <( z a;)( z alxllMxl)
iz iz iz iz

Lemma 2  (Schur complement ) Given constant

symmetric matrices 21, 22, 23,Where 21 =
T T T -l
z]and0<22= Ezthen 21+2322 23

< 0if and only if that

[21 2}[2 2]
>, -3, >, Y,

Lemma 3 For given matrices D, E and F with
F'F<I and a scalar & >0, the following inequality
holds ;

DFE+E'F'D'<gDD" + ¢ 'E'E.

2 Main results

Theorem 1  The system (1) is globally robust
asymptotically stable if there exist ¢, five positive de-
fine matrices P,Q,R,Z,U and any matrices T,M,N,
such the following LMIs hold ;

N+Y+Y +3+3 veda S M /7, -7,N 1D
e -7 0 0 <«
-7 0
—&l-

Where 2=(£,),,,,Y=T[ -(A-1),-B,0,1,0,0,
-cl.

S=[M,N-M,N,0,0,0,0] ,a=[ -E,,E,,0,

0,0,0,E,].
O, =pU+B0,, +R,, 0, =P, 0, =P, +B0,, +R,,.
2,=-0,,05=-0Q,,0, =Py, -R,, ,Qy, =P,,.
Qu =P, +BQy + Ry, 0 =P, 0 = — 0y, =
__]?22’

0y =-LUB=r, -7, +1.
M

m

Proof we choose the following Lyapunov func-
6
tion candidate v(k) = z v, (k).
ey

x(k)
x(k _TM>

9

! [ x(k)

vl(k):[ x(k—-7y)

nh= Y ANDOAG),

i=k-7(k)

k=T k-1

Y Y AN,
jek+l-ry i=j

k-1

vy (k) = 3 AT()RA(D),

i=k-Ty

U%(k) =

-1 k-1

vs(k) = Y Y AT ZA (D),

i=-rym=k+l1

mw=;m2fmwm.

e
Where )\T(k) = (xT(k) ,nT(k))T,n(k) =x(k+
1) —x(k).
Calculating the difference of v( k) along the traj-
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ectories of system (1), we obtain;

x(k =7y) +m(k —7) x(k =7y) +m(k —7)

x(k) x(k)
P )
(x(k_7'w>) (x<k_TM>)
Avy (k) SA"(E) QX (k) =A"(k=7(k))QA(k -

x(k) +n(k) ) P(

x(k k
Awl(k>=( (k) +n(k) )_

m(k)) + kz 1)lT(i)Q)\(i).
20s() = (ry =m AT (DQAE) =3, AN,

Av, (k) =X (k)RA(E) =A"(k=7(k))RA(k =7(k) ),

k-1
Avs(k) =7ym" (k) Zn(k) = Y, 7' (1) Zy(1) -
I=f-r(k)
For(k) +1

IR ROYZIOF

l=k-Ty

+

AV (k) = z u, (x" (E)Ux (k) =" (k+1)Ux(k +
1)) (by lemma 3)S;mT(k)Ux(k) -
%( Y wx(k=m)'WC Y, waCk-m)).

In addition we have n(k) - (x(k+1) —x(k)) =0. So
for any matrix T, we can get ' (k) (O +0")0(k) =
0.where @ =T( - (A(k) =1), -B(k),0,1,0,0,
- C(k)),0, (k) =[x (k) ,x" (k=7(k)),x" (k-

+oe

TM) ,nT(k) ’T]T(k _T(k)>,nT(k _Te‘l/l> ,( 2—1 umx(k -

m))"].

By lemma 2 we have

6" (k) (O +0"o(k) <" (k) (Y +Y" +& ' TDD'T" +eac)O(k).
So we can get

Av(E) <0 (k) (Q+Y+Y +27 ' TDD'T" + ea" ) 0 (k)

k-1

=Y (0 (RM+q (DZ)Z (M x
I=k-7(k)

k-1(k) -1
0(k) +Zn(1)) = Y, (6" (k)N +n' (1)

l=k-Ty
Z)Z7" x (N'0(k) +Zq(1)) <6" (k) DO(k).
By applying lemma 1, we can get Av(k) <0 and the

asymptotic stability is established.

3 Numeral example

Consider the system (1) with the following pa-

rameters ;
0.8 O -0.1 0
A:[ ],Bz ,
0 0.9 -0.2 -0.1
-0.2 0.1
_[ 0.2 0.1]’
Tw=5,7,=2,D=E =E,=E,=0.1,u=1/8.

By the Matlab Control Toolbox,we obtain ;

20.23  -3.16 -4.44 -2.01
_3.16 20.45 —-0.28 —4.55
P2l 444 —028 120 —o042f
22,01 -4.55 -0.42 12.71
oo -2y
| _2.27 98.41
- 119 -0.16 -0.09 0.8
~0.16 13.35 32.84 -2.16
U=l 000 3284 3284 —2.6|
L 0.8 -2.16 -2.62 35.54
5.81 0.17
:[0.17 6.67]’
37.52 -0.97 3.03  0.76
~0.97 38.57 0.07  0.51
| 303 007 37.516 -0.97]
0.76  0.51 -0.97 38.57
£=69.57.

4 Conclusion

In this paper, we obtained sufficient conditions for
globally robust asymptotic stability of discrete-time sys-
tem in terms of LMI. By introducing Lyapunov-Kra-
sovskii functional, a new stability criterion is estab-
lished. Finally, one example is given to show the su-

periority of our proposed stability conditions.
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[ Abstract] The global asymptotic stability of discrete-time system with distributed delays is investigated. Using
the Lyapunov stability theory and LMIs approaches, delay-dependent criteria are derived to ensure the global robust
asymptotic stability of the addressed system in the mean square for all admissible parameter uncertainties. A numer-
ical example is given to illustrate the effectiveness of our result.
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