摘要:在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格密度的有限元结果云图,从而在不牺牲精度的前提下,减少所需的计算成本。模型通过在2x、4x和8x等不同尺度条件下进行实验,在测试数据上的均方误差和平均绝对误差都实现了显著降低,充分证明了模型在数值预测准确性方面的卓越表现,结果表明,在较少的计算资源投入下,在保证输出结果的高精度下,可利用此模型进行有限元结果云图的加密。