基于残差网络的有限元分析结果云图的加密方法
作者:
作者单位:

河南大学建筑工程学院

中图分类号:

TP181;O341

基金项目:

河南省自然科学基金(242300421433,222300420415);中国博士后科学基金(2024M750780)


An encryption method for the cloud image of finite element analysis results based on residual network
Author:
Affiliation:

Architectural Engineering Institute, Henan University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在有限元分析中,提高网格密度能够显著增强仿真结果的准确性,但同时也需要消耗更多的计算资源,为了解决这一矛盾,通过将Res2Net、U-Net、通道注意力机制、几何特征提取融合在一起,对低网格密度的有限元结果云图数据进行学习,预测高网格密度的有限元结果云图,从而在不牺牲精度的前提下,减少所需的计算成本。模型通过在2x、4x和8x等不同尺度条件下进行实验,在测试数据上的均方误差和平均绝对误差都实现了显著降低,充分证明了模型在数值预测准确性方面的卓越表现,结果表明,在较少的计算资源投入下,在保证输出结果的高精度下,可利用此模型进行有限元结果云图的加密。

    Abstract:

    In finite element analysis, increasing mesh density significantly enhances the accuracy of simulation results, but it also demands a greater consumption of computational resources. In order to solve this contradiction, Res2Net, U-Net, channel attention mechanism and geometric feature extraction are integrated to learn the cloud image data of finite element results with low mesh density. Predict high mesh density finite element resulting cloud images, thereby reducing the computational costs required without sacrificing accuracy. By conducting experiments under different scale conditions such as 2x, 4x and 8x, the mean square error and mean absolute error of the test data have been significantly reduced, which fully proves the excellent performance of the model in the accuracy of numerical prediction. The results indicate that with minimal computational resource investment and guaranteed high precision of output results, this model can be effectively utilized for the upscaling of finite element result cloud images.

    参考文献
    相似文献
    引证文献
引用本文

董正方,李运华. 基于残差网络的有限元分析结果云图的加密方法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-08
  • 最后修改日期:2024-12-28
  • 录用日期:2025-01-07