基于多模态的贝叶斯网络疼痛识别方法
DOI:
作者:
作者单位:

1.陕西科技大学;2.陕西科技大学 电气与控制工程学院;3.西安工业大学 电子信息工程学院

作者简介:

通讯作者:

中图分类号:

TP391.41

基金项目:

国家自然科学基金(62071366);陕西省科技厅重点研发计划项目(2020SF-286);陕西省教育厅产业化研究项目(18JC003);西安市科技计划项目(2019216514GXRC001CG002GXYD1.1);


Pain Recognition Method Based on Multimodal Bayesian Network
Author:
Affiliation:

1.Shaanxi University of Science and Technology;2.School of Electrical and Control Engineering,Shaanxi University of Science and Technology,Xi'3.'4.an;5.School of Electronic Information Engineering,Xi'6.an University of Technology,Xi'

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    有效的疼痛管理对病人的治疗和护理至关重要,针对传统的单模态疼痛识别准确度低的问题,提出了一种基于多模态的贝叶斯网络(MMBN)疼痛识别方法。首先利用互信息对多模态特征进行相关性判断,剔除冗余的特征向量,使得模型简洁;其次将多模态特征与贝叶斯网络结构的可扩展性相结合设计了一种基于多模态的BN结构,并建立疼痛识别模型;最后利用BN概率推理算法完成疼痛识别,并在UNBC-McMaster数据库上进行验证。实验结果表明,与传统基于单模态的疼痛识别方法相比较,MMBN方法利用多模态之间的信息互补性能够有效地提高疼痛识别准确度,为目前的疼痛识别与研究提供了一种新手段。

    Abstract:

    Effective pain management is very important to the treatment and care of patients. Aiming at the problem of low accuracy of traditional single modal pain recognition, a pain recognition method based on multimodal Bayesian network (MMBN) was proposed. Firstly, used mutual information to judge the correlation of multimodal features and eliminated redundant feature vectors make the model concise; Secondly, a multimodal BN structure is designed by combining the multimodal features with the scalability of the Bayesian network structure, and a pain recognition model is constructed; Finally, the BN probabilistic reasoning algorithm was used to complete the pain recognition and it was verified on the UNBC-McMaster database. The experimental results show that by comparing with the traditional pain recognition methods based on single modal, the MMBN method can effectively improve the accuracy of pain recognition by using the information complementarity between multiple modalities, besides, providing a new method for current pain recognition and research.

    参考文献
    相似文献
    引证文献
引用本文

郭文强,赵艳,徐紫薇,等. 基于多模态的贝叶斯网络疼痛识别方法[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-12-24
  • 最后修改日期:2022-03-29
  • 录用日期:2022-04-30
  • 在线发布日期:
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息