基于二阶振荡粒子群优化算法的光伏多峰最大功率点跟踪
DOI:
作者:
作者单位:

1.广西大学 电气工程学院;2.广西电网公司南宁供电局

作者简介:

通讯作者:

中图分类号:

TM615

基金项目:

国家自然科学(51867003); 广西科技计划(桂科 AB16380193);广西重点研发计划(2021AB32008)


Photovoltaic multi peak maximum power point tracking based on second-order oscillatory particle swarm optimization algorithm
Author:
Affiliation:

1.College of Electrical Engineering,Guangxi University,Nanning;2.Nanning Power Supply Bureau of Guangxi Power Grid Corporation,Nanning

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    最大功率点跟踪(maximum power point tracking,MPPT)是光伏系统保持高效运行的有效方法。在光伏阵列发生局部遮挡时,其功率-电压曲线会出现多峰现象,传统粒子群算法(particle swarm optimization,PSO)在此情况下进行MPPT容易陷入局部最优问题,导致收敛精度降低。为解决以上问题,本文提出一种二阶振荡粒子群算法应用于最大功率点跟踪,并针对多峰函数特点进行优化,在对粒子种群初始化时采用分散定位逼近极值的方式增加粒子群的全局搜索能力,提出有效的终止策略防止系统反复波动。在Matlab/Simulink平台进行仿真对比分析的结果表明:改进算法可有效提升MPPT控制的效率和动态品质。

    Abstract:

    Maximum power point tracking (MPPT) is an effective method to keep the photovoltaic system running efficiently. When the local occlusion occurs in the photovoltaic array, the power-voltage curve will have multi peaks. In this case, traditional particle swarm optimization (PSO) for MPPT is prone to fall into the local optimal problem, resulting in reduced convergence accuracy. In order to solve the above problems, a second-order oscillating particle swarm algorithm was proposed to investigate the maximum power point tracking, and optimized for the characteristics of the multimodal function. In the initialization of particle population, decentralized distribution was used to approach the extreme value to increase the global search ability of particle swarm, and an effective termination strategy was proposed to prevent the repeated fluctuation of the system. The results of simulation and comparative analysis on MATLAB/Simulink platform show that the improved algorithm can effectively improve the efficiency and dynamic quality of MPPT control.

    参考文献
    相似文献
    引证文献
引用本文

海涛,程沛源,杨嘉芃,等. 基于二阶振荡粒子群优化算法的光伏多峰最大功率点跟踪[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-11-20
  • 最后修改日期:2022-03-26
  • 录用日期:2022-04-30
  • 在线发布日期:
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息