基于改进蚁群算法的移动机器人路径规划
DOI:
作者:
作者单位:

1.湖北工业大学;2.湖北工业大学机械工程学院;3.武汉沐沃霖科技发展有限公司

作者简介:

通讯作者:

中图分类号:

TP242

基金项目:

国家重点研发计划项目(2018YFD0301303);湖北省重点研发计划项目(2020BBB063);


Path Planning of Mobile Robot based on Improved Ant Colony Algorithm
Author:
Affiliation:

1.Hubei University of Technology,College of mechanical engineering,Wuhan;2.WuhanSMuwolinSTechnologySDevelopmentSCo,SLtd,Wuhan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    针对蚁群算法应用于机器人路径规划存在的全局搜索能力差、初始化信息素少、收敛性差、寻优能力弱等问题,提出了一种多因素改进的蚁群算法。通过改变初始化信息素浓度分配、改变启发式函数、采取蚂蚁回退策略、引入蚂蚁优化排序等方法对蚁群算法进行优化。利用MATLAB软件对改进蚁群算法进行仿真和六足机器人实验,结果表明,改进后的算法在路径更优,迭代次数更少,提高了算法的鲁棒性和寻优能力。

    Abstract:

    Aiming at the problems of poor global search ability, low initialization pheromone, poor convergence, and weak optimization ability when ant colony algorithm is applied to robot path planning, a multi-factor improved ant colony algorithm is proposed. The ant colony algorithm is optimized by changing the distribution of the initial pheromone concentration, changing the heuristic function, adopting the ant regression strategy, and introducing the ant optimization sorting method. Using MATLAB software to simulate the improved ant colony algorithm and hexapod robot experiments, the results show that the improved algorithm has better path and fewer iterations, which improves the robustness and optimization ability of the algorithm.

    参考文献
    相似文献
    引证文献
引用本文

周敬东,高伟周,杨文广,等. 基于改进蚁群算法的移动机器人路径规划[J]. 科学技术与工程, , ():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-10-27
  • 最后修改日期:2022-04-26
  • 录用日期:2022-04-30
  • 在线发布日期:
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息