多深度学习模型决策融合的齿轮箱故障诊断分类方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TH113.1

基金项目:

国家自然科学(51705052)、重庆市自然科学(cstc2019icyj-msxmX0779)、国家社会科学(17CGL003)资助。


Gearbox fault diagnosis and classification method based on decision fusion of multi-deep learning models
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    针对齿轮故障诊断中单一传感器采集信息不完全、容错性不佳及一种神经网络模型具有局限性,传统信号处理技术提取特征困难等问题,提出了多深度学习模型决策融合的齿轮箱故障诊断分类方法,构建了基于CNN(Convolutional Neural Networks)和改进SDAE(Stacked Denoising Autoencoders)的混合网络模型,根据改进的D-S证据理论实现决策级融合诊断。以时频信号作为CNN的输入,以频域信号作为SDAE的输入,采用Adam优化算法和dropout、批量归一化技术训练该混合模型。实验结果表明,利用该融合方法对齿轮进行故障诊断相比单个的网络模型CNN和SDAE诊断正确率有所提高,为齿轮故障智能诊断分类提供了新路径。

    Abstract:

    Aiming at the problems of incomplete information collection by a single sensor, poor fault tolerance, the limitation of a neural network model, and the difficulty of extracting features with traditional signal processing technology in gear fault diagnosis, a gearbox fault diagnosis classification method based on multi-deep learning model decision fusion was proposed. A hybrid network model based on CNN (Convolutional Neural Networks) and improved SDAE (Stacked Denoising Autoencoders) is constructed, and the decision level fusion diagnosis is implemented according to the improved D-S evidence theory. Taking time-frequency signals as the input of CNN and frequent-domain signals as the input of SDAE, the mixed model was trained by using Adam optimization algorithm, dropout and batch normalization techniques. Experimental results show that the accuracy of gear fault diagnosis by using the fusion method is higher than that of single network models CNN and SDAE, which provides a new path for intelligent fault diagnosis and classification of gear.

    参考文献
    相似文献
    引证文献
引用本文

陈科,段伟建,吴胜利,等. 多深度学习模型决策融合的齿轮箱故障诊断分类方法[J]. 科学技术与工程, 2022, 22(12): 4804-4811.
Chen Ke, Duan Weijian, Wu Shenli, et al. Gearbox fault diagnosis and classification method based on decision fusion of multi-deep learning models[J]. Science Technology and Engineering,2022,22(12):4804-4811.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-18
  • 最后修改日期:2022-01-26
  • 录用日期:2021-12-03
  • 在线发布日期: 2022-05-07
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息