基于InSAR的宁夏黄土丘陵区(西吉县)滑坡隐患早期识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P228

基金项目:

国家自然科学基金面上项目(41877232);黄土与第四纪地质国家重点实验室开放基金(SKLLQG1909);宁夏自然科学基金项目资助(2021AAC03429/2021AAC03426)


The identification of potential landslides in the Loess Hilly Area of Ningxia with InSAR technology
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    滑坡灾害突发性强,隐蔽性高,传统的排查手段已无法满足新形势下摸清地质灾害风险隐患底数的要求。随着雷达观测数据精度与质量的发展,合成孔径雷达干涉测量(InSAR)成为监测地表变化的有效手段。本研究利用InSAR技术对宁夏黄土丘陵区固原市西吉县进行面状监测,获取了2019年12月25日-2020年1月18日内的形变结果,结合光学遥感影像目视解译对潜在滑坡隐患进行综合遥感识别,共识别出8处隐患点,经实地核查验证,与实际情况吻合。该研究结果表明InSAR技术在该地区具有很好的适用性,可为当地防灾减灾行动提供数据参考,并为黄土丘陵区滑坡隐患早期识别提供方法借鉴。

    Abstract:

    Landslide disaster is characterized by strong abruptness and high concealment. The traditional investigation methods cannot meet the requirements of finding out the hidden dangers of geological disasters under the new situation. With the development of the accuracy and quality of radar observation data, Interferometric Synthetic Aperture Radar (InSAR) has become an effective means to monitor surface deformation. In this study, the InSAR technology was used to identify the potential landslide hazards in loess gully hill area of Xiji county, Ningxia, and the deformation results from December 25, 2019 to January 18, 2020 were obtained. Combined with the visual interpretation of optical remote sensing images, the potential landslide hazards are comprehensively identified by remote sensing, and a total of 8 hidden danger points are identified. After field verification, it is consistent with the actual situation. The research results showed that InSAR technology has good applicability in this area, which can provide data reference for local disaster prevention and reduction actions, and provide method reference for early identification of landslide hazards in loess hilly area.

    参考文献
    相似文献
    引证文献
引用本文

陈思名,霍艾迪,张佳,等. 基于InSAR的宁夏黄土丘陵区(西吉县)滑坡隐患早期识别[J]. 科学技术与工程, 2022, 22(12): 4721-4728.
Chen Siming, Huo Aidi, Zhang Jia, et al. The identification of potential landslides in the Loess Hilly Area of Ningxia with InSAR technology[J]. Science Technology and Engineering,2022,22(12):4721-4728.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-08-12
  • 最后修改日期:2022-01-21
  • 录用日期:2021-12-03
  • 在线发布日期: 2022-05-07
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息