盾构下穿及列车荷载作用下既有高铁桥梁动力响应分析
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U

基金项目:

国家自然科学基金(51768021,51868021);江西省自然科学基金(20202BABL204051); 第一作者:耿大新(1977—),男,汉族,山东济南人,博士,教授。研究方向:为隧道检测及病害整治技术。E-mail gengdaxin@ ecjtu.edu.cn*通信作者:王 宁(1983—),男,汉族,山东广饶人,博士,副教授。研究方向:从事土、路基动力理论与应用研究。E-mail:2467736627@qq.com。 ,谭成,王宁


Analysis of dynamic response of existing high-speed railway bridge under shield tunneling and train load
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    以盾构下穿某高速铁路简支梁桥为工程背景,运用有限元软件Midas/GTS建立盾构隧道先后下穿高铁桥梁模型,分析盾构下穿时列车荷载作用下高速铁路简支桥梁动力响应。研究首先分析了当盾构开挖至桥梁近侧,列车以不同速度200~350km.h-1、不同轴重110~220kN运行时对高速铁路简支梁桥墩顶沉降的影响。接着探讨在不同开挖阶段下,速度200 km.h-1轴重110kN的列车动荷载冲击下高铁桥梁墩台顶变形规律。结果表明:盾构开挖至桥梁近侧时,不同速度、轴重列车荷载冲击下,高铁桥梁墩台顶的变形规律基本一致,其沉降在一定时间达到峰值,其后迅速降低并稳定在某一波动范围内;随着列车速度与轴重的增加,墩台顶沉降峰值越大;盾构开挖时,列车时速低于200 km.h-1、轴重小于110kN时其墩台顶沉降峰值当满足高铁桥梁单墩顶竖向沉降控制标准,与列车速度相比,列车轴重对桥梁的动力响应影响更大;列车动荷载作用下,盾构隧道开挖对高铁桥梁墩顶变形的影响主要为盾构开挖至桥梁近侧的初开挖阶段,盾构开挖远离桥侧后墩顶变形基本处于稳定状态。

    Abstract:

    Taking the shield tunneling under a high-speed railway simply supported girder bridge as the engineering background, the finite element software Midas/GTS is used to establish a shield tunnel underneath the high-speed rail bridge model to analyze the dynamics of the high-speed railway simply supported bridge under the shield tunneling and train load response. The research first analyzed the impact on the settlement of the high-speed railway simply supported beam bridge pier top when the shield was excavated to the near side of the bridge and the train was running at different speeds of 200-350km.h-1 and different axle loads of 110-220kN. Next, the deformation laws of high-speed rail bridge piers and abutments under different excavation stages under the impact of the dynamic load of the train with a speed of 200 km.h-1 and an axle load of 110 kN are discussed. The results show that when the shield is excavated to the near side of the bridge, the deformation of the top of the high-speed rail bridge pier and abutment is basically the same under the impact of different speeds and axle loads. The settlement reaches the peak in a certain period of time, and then rapidly decreases and stabilizes at a certain level. Within a fluctuation range; with the increase of train speed and axle load, the peak settlement of the pier and abutment will increase; during shield excavation, the settlement of the pier and abutment when the train speed is lower than 200 km.h-1 and the axle load is less than 110kN When the peak value meets the vertical settlement control standard of a single pier top of a high-speed rail bridge, compared with the train speed, the train axle load has a greater impact on the dynamic response of the bridge; Under the action of dynamic train load, the impact of shield tunnel excavation on the deformation of high-speed rail bridge pier top is mainly from shield excavation to the initial excavation stage near the bridge. The deformation of the pier top after shield excavation is far from the bridge side is basically in a stable state .

    参考文献
    相似文献
    引证文献
引用本文

耿大新,谭成,王宁,等. 盾构下穿及列车荷载作用下既有高铁桥梁动力响应分析[J]. 科学技术与工程, 2022, 22(12): 5001-5008.
Geng Daxin, Tan Cheng, Wang Ning, et al. Analysis of dynamic response of existing high-speed railway bridge under shield tunneling and train load[J]. Science Technology and Engineering,2022,22(12):5001-5008.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-06-25
  • 最后修改日期:2022-01-11
  • 录用日期:2021-11-22
  • 在线发布日期: 2022-05-07
  • 出版日期:
×
关于近期《科学技术与工程》编辑部居家办公的说明
亟待确认的版面费信息