基于深度极限学习机的柴油机尾气排放预测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U467

基金项目:

国家自然科学基金资助项目(51768071)


Prediction of Diesel Engine Exhaust Emissions Based on Deep Extreme Learning Machine
Author:
Affiliation:

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 文章评论
    摘要:

    准确预测拖拉机等柴油机械实际工况污染物排放在排放清单建立和区域污染物排放控制方面具有重要意义。基于拖拉机不同运行状态下发动机转速、油耗、燃烧比、CO、HC、NOX和PM等实测数据作为数据源,建立深度极限学习机(Deep Extreme Learning Machine,DELM)的预测模型,并对拖拉机怠速、行走和旋耕等基本工况下的污染物排放进行预测。为进一步评估DELM预测模型的适应性,将其与支持向量机(support vector machine, SVM)和前馈神经网络(Back propagation neural network, BPNN)模型进行对比分析。结果表明,1)DELM模型在预测排放时间序列方面具有一定优势,其预测拖拉机在怠速、行走和旋耕3种状态下的NOX、HC、CO和PM排放均方根误差均值分别为5.269×10-5、5.195×10-5、5.135×10-5和2.795×10-5。2)DELM模型与SVM和BP对比发现,DELM模型在鲁棒性以及适应性方面的优势显著。3)DELM方法的较高的准确度和泛化性,为基于发动机状态数据预测移动源尾气排放提供思路和方法。

    Abstract:

    Accurately predicting the actual working condition pollutant emissions of tractors and other diesel machinery is of great significance in the establishment of emission inventories and regional pollutant emission control. Based on the measured data such as engine speed, fuel consumption, combustion ratio, CO, HC, NOX and PM under different operating conditions of the tractor as the data source, a Deep Extreme Learning Machine (DELM) prediction model was established, and the tractor idling speed, and the pollutant emissions under basic working conditions such as tractor idling, walking and rotary tillage are predicted. In order to further evaluate the adaptability of the DELM prediction model, it is compared and analyzed with support vector machine (SVM) and back propagation neural network (BPNN) models. The results show that 1) The DELM model has certain advantages in predicting the emission time series. It predicts that the average root-mean-square error of the NOX, HC, CO, and PM emissions of the tractor in the three states of idling, walking and rotary tillage are 5.269×10-5, 5.195×10-5, 5.135×10-5 and 2.795×10-5. 2) The DELM model is compared with SVM and BP and it is found that the DELM model has significant advantages in robustness and adaptability. 3) The high accuracy and generalization of the DELM method provide ideas and methods for predicting mobile source exhaust emissions based on engine state data.

    参考文献
    相似文献
    引证文献
引用本文

吐尔逊·买买提,赵梦佳,宁成博,等. 基于深度极限学习机的柴油机尾气排放预测[J]. 科学技术与工程, 2021, 21(36): 15646-15654.
吐尔逊·买买提, Zhao Mengjia, Ning Chengbo, et al. Prediction of Diesel Engine Exhaust Emissions Based on Deep Extreme Learning Machine[J]. Science Technology and Engineering,2021,21(36):15646-15654.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2021-05-10
  • 最后修改日期:2021-12-08
  • 录用日期:2021-09-29
  • 在线发布日期: 2022-01-04
  • 出版日期:
×
亟待确认的版面费信息
向全国科技工作者致敬!要追就追这样的星!