正交频分复用调制雷达高速弱目标检测算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN957.51

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


The High Speed Weak Target Detection Algorithm with Orthogonal Frequency Division Multiplexing Modulated Radar
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为提高正交频分复用(OFDM)调制雷达对高速弱目标的检测能力,提出了一种基于相参Radon变换的OFDM调制雷达高速弱目标检测算法。首先分析了高速弱目标回波信号模型以及对其进行长时间相参积累时出现的跨距离单元走动问题,然后采用相参Radon变换算法沿距离单元走动斜线对其进行长时间相参积累,并研究了其存在速度模糊情况时的参数估计方法。理论分析和仿真结果表明,该算法具有比非相参Radon变换和动目标检测(MTD)更优的低信噪比(SNR)背景下的目标检测性能,并能进行有效的参数估计。

    Abstract:

    In order to improve the detection capability of orthogonal frequency division multiplexing (OFDM) modulated radar for high speed weak target, a high speed weak target detection algorithm for OFDM modulated radar based on coherent Radon transform was proposed. Firstly, the echo signal model of high speed weak target and the range migration which generated by the long-time coherent integration was analyzed, then the coherent Radon transform algorithm was used to long-time coherent integration along the slant line of the range migration, and the parameter estimation method for the existence of velocity ambiguity was studied. Theoretical analysis and simulation results show that, the proposed algorithm has better detection performance in the low signal-to-noise ratio (SNR) background compared with incoherent Radon transform and moving target detection (MTD), and it can estimate the parameters effectively.

    参考文献
    相似文献
    引证文献
引用本文

杨勇军,梅进杰,胡登鹏,等. 正交频分复用调制雷达高速弱目标检测算法[J]. 科学技术与工程, 2019, 19(7): .
YANG Yong-jun,,HU Deng-peng, et al. The High Speed Weak Target Detection Algorithm with Orthogonal Frequency Division Multiplexing Modulated Radar[J]. Science Technology and Engineering,2019,19(7).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-08-23
  • 最后修改日期:2018-11-24
  • 录用日期:2018-11-28
  • 在线发布日期: 2019-03-15
  • 出版日期:
×
律回春渐,新元肇启|《科学技术与工程》编辑部恭祝新岁!
亟待确认版面费归属稿件,敬请作者关注