引用本文: | 崔光照,张勋才,曹祥红,董亚非,王延峰. 基于动态贝叶斯网络的多时延基因调控网络构建[J]. 科学技术与工程, 2005, (17): 1247-12511259 |
| . Reconstruction of Gene Regulatory Networks with Multi-time Delay Based on Dynamic Bayesian Networks[J]. Science Technology and Engineering, 2005, (17): 1247-12511259 |
|
|
|
本文已被:浏览 1918次 下载 195次 |
 码上扫一扫! |
|
基于动态贝叶斯网络的多时延基因调控网络构建 |
崔光照,张勋才,曹祥红,董亚非,王延峰
|
|
|
摘要: |
分子生物学的主要挑战是如何更好地理解基因间的调控机理。重构调控网络有助于探索生命系统的本质问题。目前,已提出的方法大多数都不考虑基因表达之间的时延,或者假定其时延是一个常量。这为深入理解基因调控的时-空机制带来了困难。现提出一个用连续DBNs构建具有多时延基因调控网络的方法,它可以系统地分析基因之间的调控关系。将其应用于酵母菌的转录调控网络中,结果显示,该方法能更好地估计转录时延,进一步提高了调控网络构建的精度。 |
关键词: 基因调控网络,动态贝叶斯网络,时序微阵列数据,时延 |
DOI: |
分类号:Q344.14 |
基金项目:国家自然科学基金(30370354,30370356)资助 |
|
Reconstruction of Gene Regulatory Networks with Multi-time Delay Based on Dynamic Bayesian Networks |
Cui GuangZhao;Zhang XunCai;Cao XiangGong;Dong YaFei;Wang YanFeng
|
Abstract: |
One of the major challenges in molecular biology is to understand the precise mechanism by which gene expression is regulated. Reconstruction of regulatory networks is essential to modeling this mechanism. Most research work in constructing gene networks either assumes that there is no time delay in gene expression or that there is a constant time delay. An extended approach for modeling a gene networks with Multi-Time Delay by using a DBNs model is provided. It is more accurate in determining the gene structure as compared to the traditional methods. It is evaluated using time series expression data measured during yeast cell cycle. The results suggest that it is possible to unambiguously determine gene regulatory network with time delays from time series gene expression datasets. |
Key words: gene networks dynamic Bayesian networks microarray data time delay |
|
|
参考文献(共21条): | [1]de Jong H. Modeling and simulation of genetic regulatory systems: a literature review. Journal of Computational Biology,2002;9(1): 67-103 | [2]Friedman N, Linial M, Nachman I, et al. Using Bayesian network to analyze expression data. Journal of Computational Biology, 2000; 7:601-620 | [3]Friedman N. Inferring cellular networks using probabilistic graphical models. Science, 2004;303:799-805 | [4]Murphy K, Mian S. Modelling gene expression data using dynamic Bayesian networks. Technical Report, Berkeley: Computer Science Division, University of California, 1999 | [5]Kim S, Imoto S, Miyano S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Bioinformatics, 2003;4(3): 228-235 | [6]Kim S, Imoto S, Miyano S. Dynamic Bayesian network and nonparametric regression for nonlinear modeling of gene networks from time series gene expression data. Journal of Bioinformatics and Computational Biology, 2004; 2(1): 77-98 | [7]Chen T, He H, Church G. Modeling gene expression with differential equations. In PSB, 1999;4:29-40 | [8]Zou M, Conzen S D. A new dynamic Bayesian network (DBN)approach for identifying gene regulatory networks from time course microarray data. Bioinformatics, 2005; 21(1) :71-79 | [9]Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: the combination of knowledge and statistical data.Machine Learning, 1995;20:197-243 | [10]Dagum P, Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence,1993; 60:141- 153 | [11]Chickering D. Learning equivalence classes of Bayesian network structures. Journal of Machine Learning Research, 2002; 2:445-498 | [12]Heckerman D, Mamdani A, Wellman M P. Real-world applications of Bayesian networks. Communications of the ACM,1995; 38(3): 24-26 | [13]Heckerman D. Learning in graphical models. Dordrecht, the Netherlands: Kluwer, 1998 | [14]Arnone A, Davidson B. The hardwiring of development: organization and function of genomic regulatory systems. Development, 1997; 124:1851-1864 | [15]Heckerman D, Geiger D. Likelihoods and parameter priors for Bayesian networks. Technology Report MSR TR-95-54, Microsoft Research, Redmond, WA, November, 1995 | [16]Gelman A, Carlin J B, Stern H, et al. Bayesian Data Analysis.(Second Edition). CRC Press, 2003 | [17]DeRisi J L, Iyer V R, Brown P O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science ,1997; 278: 680-686 | [18]Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive identification of cell cycle-regulated genes of the yeast saccharomyce scerevisiae by microarray hybridization. Molecular Biology of the Cell, 1998;9:3273-3297 | [19]Futcher B. Transcriptional regulatory networks and yeast cell cycle. Current Opinion in Cell Biology, 2002; 14, 676-683 | [20]Paul A. Friedman MD. IncyteDB/OL. http:∥www. incyte.com/proteome/YPD, 2004 | 更多... |
|
系统正在查找本文的被引信息,请稍候...
|
|
|
|
|
|