首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
党宏社,王淼,张选德. 基于深度学习的面部表情识别方法综述[J]. 科学技术与工程, 2020, 20(24): 9724-9732.
DANG Hong-she,WANG Miao,ZHANG Xuan-de.A Survey of Facial Expression Recognition Methods Based on Deep Learning[J].Science Technology and Engineering,2020,20(24):9724-9732.
基于深度学习的面部表情识别方法综述
A Survey of Facial Expression Recognition Methods Based on Deep Learning
投稿时间:2020-01-19  修订日期:2020-06-14
DOI:
中文关键词:  深度学习  表情识别  特征提取  表情分类
英文关键词:deep learning  expression recognition  feature extraction  expression classification
基金项目:国家自然科学基金(61871260)
        
作者单位
党宏社 陕西科技大学大学电气与控制工程学院
王淼 陕西科技大学大学电气与控制工程学院
张选德 陕西科技大学大学电气与控制工程学院
摘要点击次数: 381
全文下载次数: 136
中文摘要:
      人脸表情识别就是让计算机按照人类的思维理解表情,是人机交互的重要组成,然而随着深度学习的迅速发展,深度学习技术在人脸表情领域的研究也成为研究热点,所以对深度学习技术在表情识别中的应用及取得的成果进行分析。首先总结了几种常用表情数据集;然后从特征提取和特征分类两方面对基于深度学习的表情识别方法进行了分类,并从网络改进方面分析了基于深度学习的表情识别中的几种网络改进方法;最后阐述了表情识别这一领域中面临的挑战和未来发展。
英文摘要:
      Facial expression recognition is to make computer understand facial expression according to human thinking, which is an important part of human-computer interaction. However, with the rapid development of deep learning, the research of deep learning technology in facial expression field has become a research hotspot, so the application and achievements of deep learning technology in facial expression recognition were analyzed. Firstly, several common expression data sets were summarized; then, the expression recognition methods based on deep learning were classified from two aspects of feature extraction and feature classification, and several network improvement methods in expression recognition based on deep learning were analyzed from the aspect of network improvement; finally, the challenges and future development in the field of expression recognition were described.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第33391495位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号