首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|证明资料|样刊邮寄查询|常见问题解答|联系我们
段礼祥,赵剑平,曲海涛,等. 基于深度置信网络的齿轮箱智能诊断方法[J]. 科学技术与工程, 2020, 20(27): 11099-11104.
DUAN Li-xiang,ZHAO Jian-ping,QU Hai-tao,et al.Gearbox Intelligent Diagnosis Method Based on Deep Belief Network[J].Science Technology and Engineering,2020,20(27):11099-11104.
基于深度置信网络的齿轮箱智能诊断方法
Gearbox Intelligent Diagnosis Method Based on Deep Belief Network
投稿时间:2019-11-14  修订日期:2020-06-27
DOI:
中文关键词:  齿轮箱  深度置信网络 变分模态分解  最大相关峭度解卷积 故障诊断
英文关键词:gearbox  deep belief network  variational mode decomposition  maximum correlation kurtosis deconvolution  fault diagnosis
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
              
作者单位
段礼祥 中国石油大学(北京)安全与海洋工程学院
赵剑平 中国石油大学(北京)安全与海洋工程学院
曲海涛 中国石化胜利油田分公司地面工程维修中心
张德军 中国石油塔里木油田分公司
秦天飞 中国石油大学(北京)安全与海洋工程学院
摘要点击次数: 239
全文下载次数: 81
中文摘要:
      针对油田现场强背景噪声干扰下,难以实现齿轮箱故障精确诊断的问题,提出基于深度置信网络(Deep Belief Network,DBN)的齿轮箱智能诊断方法。首先运用变分模态分解(Variational Mode Decomposition,VMD)对齿轮箱振动信号分别进行分解;然后依据互相关准则对小于阈值的模态运用最大相关峭度解卷积(Maximum Correlated Kurtosis Deconvolution,MCKD)进行降噪滤波处理,并对降噪后的信号进行重构;最后构造故障特征集,实现基于DBN的故障特征自适应挖掘与故障模式智能识别。对现场的齿轮箱故障诊断表明,本文提出的方法具有自适应性,能显著提高故障分类准确率,为保障油田设备安全可靠运行提供了依据。
英文摘要:
      Aiming at the difficulty to accurately extract the gearbox fault features under strong background noise in oilfield, an intelligent diagnosis method of gearbox faults based on deep belief network (DBN) was proposed. Firstly, the vibration signals of gearbox were decomposed by variational mode decomposition (VMD). Then, according to the cross-correlation criterion, the components smaller than the threshold were denoised and filtered by maximum correlation kurtosis deconvolution (MCKD), and the denoised signals were reconstructed. Finally, the fault feature sets were constructed to realize adaptive fault feature mining and intelligent fault pattern recognition based on DBN. The gearbox diagnosis in oilfield shows that the proposed method has self-adaptability, significantly improves the accuracy of fault classification, and provides a basis for ensuring the safe and reliable operation of oilfield equipments.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第34845202位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号