首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|证明资料|样刊邮寄查询|常见问题解答|联系我们
荆学东,陈亚楠. 基于改进A*算法的一种智能车路径规划方法[J]. 科学技术与工程, 2020, 20(27): 11161-11165.
Jing xuedong,Chen yanan.Intelligent Vehicle Trajectory Planning based on Improved Genetic Algorithm[J].Science Technology and Engineering,2020,20(27):11161-11165.
基于改进A*算法的一种智能车路径规划方法
Intelligent Vehicle Trajectory Planning based on Improved Genetic Algorithm
投稿时间:2019-11-08  修订日期:2020-06-27
DOI:
中文关键词:  路径规划  图论  A*算法  仿真模拟实验
英文关键词:path planning graph theory A-star algorithm simulation experiment
基金项目:微创脊柱手术并联机器人关键技术研究
     
作者单位
荆学东 Shanghai Institute of Technology
陈亚楠 上海市奉贤区海湾镇海泉路100号,上海应用技术大学
摘要点击次数: 269
全文下载次数: 93
中文摘要:
      轨迹规划是智能车安全行驶的关键技术。本文基于A*算法在复杂地图轨迹规划耗时长,拐点多等问题,提出了一种基于图论及几何方法的改进A*算法的避障与导航方法。该方法在传统A*算法的基础上结合图论进行路径规划,同时剔除路径中冗余节点,并采用Labview进行具体的仿真实验来验证轨迹规划算法的性能。结果表明:该算法在复杂环境中仍能有效找到距离短且平滑路径,提高了智能车的运行效率降低了能耗,可用于实际的智能车安全行驶管理中。
英文摘要:
      Trajectory planning is the key technology of intelligent vehicle safe driving. In order to solve the problems of long time consuming and many inflection points of A star algorithm in complex map trajectory planning, an improved A star algorithm based on the graph theory and the geometric method is proposed. The improved algorithm is combined the traditional A star algorithm with the graph theory, eliminate the redundant nodes, and the performance of the trajectory planning algorithm is verified by simulation experiments. The results show that the short distance and smooth path can still be found effectively in the complex environment, which improves the running efficiency of the intelligent vehicle and reduces the energy consumption, and can be used in the actual safe driving management of the intelligent vehicle.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第34984780位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号