首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
汪斌,孙博文,黄召庭,等. 基于遗传算法的最小二乘支持向量机预测凝析气藏露点压力[J]. 科学技术与工程, 2020, 20(16): 6452-6458.
Wang Bin,et al.Dew point pressure prediction of condensate gas reservoir based on GA-LSSVM[J].Science Technology and Engineering,2020,20(16):6452-6458.
基于遗传算法的最小二乘支持向量机预测凝析气藏露点压力
Dew point pressure prediction of condensate gas reservoir based on GA-LSSVM
投稿时间:2019-09-21  修订日期:2020-05-31
DOI:
中文关键词:  遗传算法  LSSVM  凝析气藏  露点压力  预测
英文关键词:Genetic algorithm  LSSVM  condensate gas reservoir  dew point pressure  prediction.
基金项目:中国石油股份公司重大科技专项“塔里木盆地大油气田增储上产关键技术研究与应用”课题4“凝析气藏开发中后期提高采收率关键技术研究与应用”(2018E-1804)
                    
作者单位
汪斌 中国石油塔里木油田分公司勘探开发研究院
孙博文 西南石油大学油气藏地质及开发工程国家重点实验室
黄召庭 中国石油塔里木油田分公司勘探开发研究院
郭平 西南石油大学油气藏地质及开发工程国家重点实验室
姚琨 中国石油塔里木油田分公司勘探开发研究院
汪周华 西南石油大学油气藏地质及开发工程国家重点实验室
白银 中国石油塔里木油田分公司勘探开发研究院
摘要点击次数: 80
全文下载次数: 28
中文摘要:
      露点压力的准确预测对保障凝析气藏的高效开发至关重要。近年来,数据挖掘、人工智能等大数据技术逐渐成为研究热点,其对复杂的非线性回归与分类问题有良好的解决策略。本文基于优化算法和机器学习,提出了一种将遗传算法(GA)与最小二乘支持向量机(LSSVM)相结合的露点压力预测模型(GA-LSSVM模型),并利用误差反向传播(BP)和径向基函数(RBF)人工神经网络建立了相应的露点压力模型,然后进行模型精度对比。在皮尔逊关联性分析基础上,上述模型均选取气藏温度、(N2+CO2、C1、C2-C6、C7+)摩尔分数、C7+相对分子质量、C7+相对密度和气油比作为自变量。采用公开发表的34个露点压力数据进行参数优化,得到了GA-LSSVM、BP和RBF模型的最优参数,并对15组实测露点压力数据进行预测。结果表明:GA-LSSVM模型预测精度明显高于BP、RBF神经网络模型,具有良好的预测能力,GA-LSSVM模型的平均绝对相对误差(AARD)仅为3.02%,其中最大绝对相对误差(ARD)为16.64%,最小ARD为0.05%,BP和RBF神经网络模型的AARD分别为6.46%,10.54%。最后,根据Leverage方法,进行了所有数据的异常点检测。本研究为凝析气藏露点压力预测提供了一种有效方法。
英文摘要:
      The accurate prediction of dew point pressure is very important to ensure the efficient development of condensate gas reservoirs. In recent years, data mining, artificial intelligence and other data technologies have gradually become a research hotspot, which has a good strategy for solving complex non-linear regression and classification problems. Based on optimization algorithm and machine learning, a dew point pressure prediction model (GA-LSSVM) is proposed, which combines genetic algorithm (GA) with least squares support vector machine (LSSVM). Back propagation (BP) and Radial Basis Function (RBF) artificial neural networks are used to establish the corresponding dew point pressure model, and then the accuracy of the model is compared. Based on Pearson correlation analysis, gas reservoir temperature, (N2+CO2, C1, C2-C6, C7+) molar fraction, C7+ relative molecular mass, C7+ relative density and gas-oil ratio are selected as independent variables in the above models. The optimal parameters of GA-LSSVM, BP and RBF models were obtained by optimizing the parameters of 34 dew point pressure data published publicly, and 15 groups of measured dew point pressure data were predicted. The results show that the prediction accuracy of GA-LSSVM model is obviously higher than that of BP and RBF neural network models. The average absolute relative error (AARD) of GA-LSSVM model is only 3.02%. The maximum absolute relative error (ARD) is 16.64%. The minimum ARD is 0.05%. The AARD of BP and RBF neural network models is 6.46% and 10.54%, respectively. Finally, according to Leverage method, anomaly detection of all data is carried out. This study provides an effective method for predicting dew point pressure in condensate gas reservoirs.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第31355067位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号