首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|证明资料|样刊邮寄查询|常见问题解答|联系我们
徐磊,张学连,肖琼,等. 基于MIV-BP神经网络的公交场站污染物暴露水平测评[J]. 科学技术与工程, 2020, 20(30): 12664-12671.
xulei,zhangxuelian,xiaoqiong,et al.Evaluation of Pollutant Exposure Level at Bus Stop Based on MIV-BP Neural Network[J].Science Technology and Engineering,2020,20(30):12664-12671.
基于MIV-BP神经网络的公交场站污染物暴露水平测评
Evaluation of Pollutant Exposure Level at Bus Stop Based on MIV-BP Neural Network
投稿时间:2019-09-09  修订日期:2020-08-03
DOI:
中文关键词:  公交场站  MIV-BP神经网络  PM2.5暴露浓度  CO暴露浓度  预测评估  
英文关键词:bus station  MIV-BP neural network  PM2.5 exposure concentration  CO exposure concentration  predictive assessment
基金项目:重庆市自然科学基金(cstc2018jcyjAX0288)、重庆市教委科学技术研究项目(KJ1600540)、山地城市交通系统与安全重庆市重点实验室开放基金(KTSS201602)
           
作者单位
徐磊 重庆交通大学交通运输学院
张学连 重庆交通大学交通运输学院
肖琼 重庆交通大学交通运输学院
彭金栓 重庆交通大学交通运输学院
摘要点击次数: 142
全文下载次数: 53
中文摘要:
      为了研究城市居民在公交场站污染物暴露水平下的影响程度, 分析交通、公交场站、气象条件及周边环境对污染物浓度的影响, 本文通过测量早晚高峰以及平峰期间的PM2.5浓度、CO浓度、风速、温度、车流量等10个因素, 采用平均影响值(MIV)与BP(back propagation)神经网络相结合的方法, 确定公交场站污染物暴露水平的主要影响因素, 并在此基础上建立MIV-BP神经网络测评模型。评估结果表明:公交场站PM2.5的暴露浓度与公交停靠站类型、车流量、小车流量、大车流量、风速、湿度、降雨量有关;CO的暴露浓度与瞬时停靠车辆数、公交停靠站类型、湿度、风速、温度、车流量有关;改进后的MIV-BP神经网络模型较BP神经网络具有更高的预测精度和准确度, 可有效对公交场站污染物暴露水平进行测评。
英文摘要:
      In order to study the influence degree of the pollutants exposure levels on urban residents at the bus terminal and analyze the influence of traffic, the bus terminal, meteorological condition, surroundings on pollutant concentration, 10 factors including PM2.5 concentration, CO concentration, wind speed, temperature, vehicle flow etc. during peak hours in the morning and evening and peak periods were measured. Then the main influencing factors of pollutant exposure levels in bus stations were determined by using the combination of mean impact value (MIV) and BP (back propagation) neural network, and on this basis MIV-BP neural network assessment model was established. The final evaluation results indicate that the exposure concentration of PM2.5 at the bus station is related to the type of bus stop, traffic flow, car flow, traffic flow, wind speed, humidity, rainfall; CO exposure concentration is related to the number of instantaneously parked vehicles, the type of bus stop, humidity, wind speed, temperature, traffic flow; the improved MIV-BP neural network model has higher prediction accuracy and degree of accuracy than the original BP neural network, and can effectively evaluate the pollution exposure level of bus stop.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第34985144位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号