首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
魏宇册,刘晓悦. 基于改进灰色关联分析的BA-BP短期负荷预测[J]. 科学技术与工程, 2020, 20(1): 223-227.
weiyuce.Short-term load forecasting based on improved grey relational analysis BA-BP neural network[J].Science Technology and Engineering,2020,20(1):223-227.
基于改进灰色关联分析的BA-BP短期负荷预测
Short-term load forecasting based on improved grey relational analysis BA-BP neural network
投稿时间:2019-05-14  修订日期:2019-06-23
DOI:
中文关键词:  负荷预测  模糊聚类  灰色关联分析法  蝙蝠算法  相似日
英文关键词:load forecasting  fuzzy clustering  grey correlation analysis  bat algorithm  similar day
基金项目:国家自然科学基金资助项目(51574102);国家自然科学基金资助项目(51474086)
     
作者单位
魏宇册 华北理工大学
刘晓悦 华北理工大学
摘要点击次数: 540
全文下载次数: 132
中文摘要:
      针对短期电力负荷随机性强、预测精度低等问题,文中提出了基于模糊灰色聚类与蝙蝠优化神经网络的短期负荷预测模型。采用模糊聚类方法选择相似日粗集,然后用改进的灰色关联分析法选取相似日;为了克服传统BP算法易陷入局部极值和收敛速度慢等问题,利用相似日集中的样本训练蝙蝠优化的BP神经网络预测模型。以某地区的历史数据为实际算例,将文中所提算法与普通的BP神经网络、传统灰色关联与蝙蝠优化的BP神经网络预测结果相比,结果表明文中所提方法有很高预测精度和稳定性,在实际中有一定应用价值。
英文摘要:
      In view of the strong randomness and low prediction accuracy of short-term forecasting, a short-term load forecasting model based on fuzzy grey clustering and bat optimization neural network is proposed. Fuzzy clustering method was used to select rough sets of similar days, and then improved grey correlation analysis method was used to select the similar days. In order to overcome the problem that the traditional BP algorithm is prone to fall into local extremum and slow convergence speed, BP neural network prediction model optimized by training bats with samples of similar daily concentration is used. Taking the historical data of a certain area as a practical example, comparing the proposed algorithm with the common BP neural network, traditional gray correlation and bat optimized BP neural network prediction results, the results show that the proposed method has high prediction accuracy and Stability has certain application value in practice.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第31214076位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号