首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
张珂,侯捷. 基于改进的卷积神经网络图像识别方法[J]. 科学技术与工程, 2020, 20(1): 252-257.
zhangke.Research on Image Recognition Method Based on Improved Convolution Neural Network[J].Science Technology and Engineering,2020,20(1):252-257.
基于改进的卷积神经网络图像识别方法
Research on Image Recognition Method Based on Improved Convolution Neural Network
投稿时间:2019-05-14  修订日期:2019-09-07
DOI:
中文关键词:  图像识别;LeNet-5  卷积神经网络;特征提取;深度学习
英文关键词:image recognition LeNet-5 convolution neural network feature extraction
基金项目:
     
作者单位
张珂 上海应用技术大学
侯捷 上海应用技术大学
摘要点击次数: 246
全文下载次数: 67
中文摘要:
      当前的图像特征识别大多采用的是传统的机器学习方法与卷积神经网络方法。传统的机器学习对图像识别的研究,特征提取多是通过人工完成,泛化能力不够强。最早的卷积神经网络也存在诸多缺陷,如硬件要求高,需要的训练样本量大,训练时间长。针对以上问题,提出了一种改进的神经网络模型,在LeNet-5模型的基础上并在保证识别率的情况下,简化网络结构,提高训练速度。将改进的网络结构在MINIST字符库上进行识别实验,分析网络结构在不同参量中的识别能力,并与传统算法进行对比分析。结果表明本文提出的改进结构在当前识别正确率上,明显高于传统的识别算法,为当前的图像识别提供新的参考。
英文摘要:
      Most of the current image feature recognition methods use traditional machine learning methods and convolution neural network methods.In traditional machine learning research on image recognition, feature extraction is mostly done manually, and generalization ability is not strong enough.The earliest convolution neural network also has many defects, such as high hardware requirements, large training samples and long training time. To solve the above problems, an improved neural network model was proposed, which simplifies the network structure and improves the training sped on the basis of LeNet-5 model and under the condition of ensuring the recognition rate. The improved network structure was tested on MINIST character database to analyze the recognition ability of the network structure in different parameters and compared with the traditional algorithm. The results show that the improved structure proposed in this paper is significantly higher than the traditional recognition algorithm in the current recognition accuracy, providing a new reference for the current image recognition.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第28152001位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号