首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
刘中,陈伟海,吴星明. 基于物体信息的图像显著性区域检测[J]. 科学技术与工程, 2019, 19(35): 286-289.
Liu Zhong.Salient Region Detection Based on Objectness Cue[J].Science Technology and Engineering,2019,19(35):286-289.
基于物体信息的图像显著性区域检测
Salient Region Detection Based on Objectness Cue
投稿时间:2019-05-08  修订日期:2019-09-03
DOI:
中文关键词:  显著性 选择性注视 计算机视觉 似物性
英文关键词:saliency  visual attention  computer vision  objectness
基金项目:国家自然科学基金项目(面上项目,重点项目,重大项目)
        
作者单位
刘中 北京航空航天大学自动化科学与电气工程学院
陈伟海 北京航空航天大学自动化科学与电气工程学院
吴星明 北京航空航天大学自动化科学与电气工程学院
摘要点击次数: 259
全文下载次数: 112
中文摘要:
      针对目前图像显著性检测存在的显著性图边缘模糊、缺乏视觉高层信息等问题,提出了一种基于物体信息的显著性检测算法。将似物性计算与显著性计算相结合,可以将前景与背景分离,抑制高对比度干扰区域的影响。首先采用改进的L0平滑算法对图像进行滤波处理,然后通过超像素分割将图像分成若干图像块,再通过聚类算法进行合并,得到待检测图像块。采用似物性检测算法计算物体可能存在的区域,与待检测图像块进行融合,得到物体显著性图,再通过颜色对比度及空间分布特征计算显著性图,最后将二者融合,得到最终结果。实验结果表明,算法能够得到清晰的物体边缘,对图像的显著性区域能够较为全面地覆盖,有效地抑制高对比区域的干扰。
英文摘要:
      An algorithm for salient region detection based on objectness cue is proposed for blur of edges in image and lack of high level information in recent research of saliency detection. Objectness and saliency are combined for separating foreground from background and restrain noise from high contrast regions in image. Firstly, a modified L0 norm smoothing algorithm is adopted for image filtering. Secondly, superpixels segmentation is executed obtaining amount of image regions. Thirdly, superpixels regions are merged through clustering algorithm. Objectness detection algorithm is applied for searching generic object proposals and combining with image regions for objectness saliency map. Saliency of low level features are computed through color contrast and spatial distribution. Finally, objectness saliency and low level feature saliency are combined for saliency map. The experiments show that the proposed algorithm can get saliency map with clear edges, cover all salient regions in image and restrain noise from high contrast regions effectively.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第31634218位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号