首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
唐文权,徐武,文聪,等. 复杂背景下基于肤色检测的动态手势分割与识别[J]. 科学技术与工程, 2019, 19(33): 330-335.
TANG Wen-quan,et al.Research on Dynamic Gesture Segmentation and Recognition Based on Skin Color Detection in Complex Background[J].Science Technology and Engineering,2019,19(33):330-335.
复杂背景下基于肤色检测的动态手势分割与识别
Research on Dynamic Gesture Segmentation and Recognition Based on Skin Color Detection in Complex Background
投稿时间:2019-04-14  修订日期:2019-07-08
DOI:
中文关键词:  YCbCr颜色空间 改进的三帧差分法 BP神经网络 动态手势分割与识别
英文关键词:ycbcr color space improved three-frame difference method bp neural network dynamic gesture segmentation and recognition
基金项目:国家自然科学基金项目(联合基金项目)
           
作者单位
唐文权 Institute of electrical and Information Engineering, Yunnan Minzu University
徐武 云南民族大学电气信息工程学院
文聪 云南民族大学电气信息工程学院
郭兴 云南民族大学电气信息工程学院
摘要点击次数: 140
全文下载次数: 41
中文摘要:
      在类肤色的复杂背景下,基于肤色检测的动态手势识别会因肤色干扰导致识别效率较低。本文提出了一种基于YCbCr颜色空间的改进三帧差分法的动态手势识别方法。首先利用改进的三帧差分法对动态手势进行分割,有效去除类肤色背景;然后根据人体肤色在YCbCr颜色空间中的聚类效果,采用基于椭圆模型的肤色检测方法有效去除非肤色背景,分割出手势区域。通过双特征提取,有效去除大范围的肤色背景,最终得到完整的手势;最后利用BP神经网络较强的自学习能力,对分割的动态手势进行检测识别。实验结果表明,此方法在应对环境变化时具有较好的实时性和抗干扰能力,拥有较高的识别率。
英文摘要:
      In complex skin-like background, dynamic gesture recognition based on skin color detection will lead to low recognition efficiency due to skin color interference. In this paper, an improved three-frame difference method for dynamic gesture recognition based on elliptic skin color model is proposed. Firstly, the improved three-frame difference method was used to segment the dynamic gesture, and the skin-like background was effectively removed. Then, according to the clustering effect of human skin color in YCbCr color space, the skin color detection method based on ellipse model was used to effectively remove the non-skin background and segment the gesture region. Through double feature extraction, the large-scale skin color background was effectively removed to obtain complete gestures. Finally, the BP neural network was used to detect and recognize the segmented dynamic gestures with strong self-learning ability. The experimental results show that this method has good real-time and anti-jamming ability and high recognition rate when dealing with environmental changes.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第27550157位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号