首页|期刊简介|投稿指南|分类索引|刊文选读|订阅指南|资料|样刊邮寄查询|常见问题解答|联系我们
黄 为,李永刚,胡上成,等. 基于循环神经网络的船摇数据实时预测[J]. 科学技术与工程, 2019, 19(31): 222-226.
huang wei,li yonggang,et al.Real Time Prediction of Ship-swaying Data Using RNN[J].Science Technology and Engineering,2019,19(31):222-226.
基于循环神经网络的船摇数据实时预测
Real Time Prediction of Ship-swaying Data Using RNN
投稿时间:2019-03-24  修订日期:2019-04-29
DOI:
中文关键词:  循环神经网络 门循环单元 时间序列 实时预报
英文关键词:RNN GRU time sequence real-time prediction
基金项目:
           
作者单位
黄 为 China Satellite Maritime Tracking and Control Department
李永刚 中国卫星海上测控部技术部
胡上成 中国卫星海上测控部技术部
汪毅 中国卫星海上测控部技术部
摘要点击次数: 90
全文下载次数: 18
中文摘要:
      航天测量船船体姿态数据实时预测具有重要的意义。论文针对测量船船摇运动建立了基于循环神经网络的预测模型,详细描述了适用于本文模型的船体姿态数据集构建以及预测模型的实现过程。在该模型的基础上,利用实测数据对船体姿态数据进行短时预测,并将预测结果与滤波方法进行了比较,实验结果验证了本文算法的有效性。
英文摘要:
      Real-time prediction of the TT&C ship’s ship-swaying data is of great significance. In this paper, a prediction model based on recurrent neural network was established for measuring the motion of ship-swaying. It was described in detail the realization process of the prediction model. In addition, it constructed datasets suitable for this model. Based on this model, short-term prediction of ship-swaying is carried out by using the real measured data, and the prediction results are compared with the filtering method. The experimental results verify the effectiveness of the proposed algorithm.
查看全文  查看/发表评论  下载PDF阅读器
关闭
你是第26579859位访问者
版权所有:科学技术与工程编辑部
主管:中国科学技术协会    主办:中国技术经济学会
Tel:(010)62118920 E-mail:stae@vip.163.com
京ICP备05035734号-4
技术支持:本系统由北京勤云科技发展有限公司设计

京公网安备 11010802029091号